An efficient quantum neuro-fuzzy classifier based on fuzzy entropy and compensatory operation

نویسندگان

  • Cheng-Hung Chen
  • Cheng-Jian Lin
  • Chin-Teng Lin
چکیده

In this paper, a quantum neuro-fuzzy classifier (QNFC) for classification applications is proposed. The proposed QNFC model is a five-layer structure, which combines the compensatory-based fuzzy reasoning method with the traditional Takagi–Sugeno–Kang (TSK) fuzzy model. The compensatory-based fuzzy reasoning method uses adaptive fuzzy operations of neuro-fuzzy systems that can make the fuzzy logic system more adaptive and effective. Layer 2 of the QNFC model contains quantum membership functions, which are multilevel activation functions. Each quantum membership function is composed of the sum of sigmoid functions shifted by quantum intervals. A self-constructing learning algorithm, which consists of the self-clustering algorithm (SCA), quantum fuzzy entropy and the backpropagation algorithm, is also proposed. The proposed SCA method is a fast, one-pass algorithm that dynamically estimates the number of clusters in an input data space. Quantum fuzzy entropy is employed to evaluate the information on pattern distribution in the pattern space. With this information, we can determine the number of quantum levels. The backpropagation algorithm is used to tune the adjustable parameters. The simulation results have shown that (1) the QNFC model converges quickly; (2) the QNFC model has a higher correct classification rate than other models. C.-H. Chen · C.-T. Lin Department of Electrical and Control Engineering, National Chiao-Tung University, Hsinchu 300, Taiwan, ROC C.-J. Lin (B) Department of Electrical Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan, ROC e-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A research on classification performance of fuzzy classifiers based on fuzzy set theory

Due to the complexities of objects and the vagueness of the human mind, it has attracted considerable attention from researchers studying fuzzy classification algorithms. In this paper, we propose a concept of fuzzy relative entropy to measure the divergence between two fuzzy sets. Applying fuzzy relative entropy, we prove the conclusion that patterns with high fuzziness are close to the classi...

متن کامل

A NEURO-FUZZY GRAPHIC OBJECT CLASSIFIER WITH MODIFIED DISTANCE MEASURE ESTIMATOR

The paper analyses issues leading to errors in graphic object classifiers. Thedistance measures suggested in literature and used as a basis in traditional, fuzzy, andNeuro-Fuzzy classifiers are found to be not suitable for classification of non-stylized orfuzzy objects in which the features of classes are much more difficult to recognize becauseof significant uncertainties in their location and...

متن کامل

An entropy-based quantum neuro-fuzzy inference system for classification applications

In this paper, an entropy-based quantum neuro-fuzzy inference system (EQNFIS) for classification applications is proposed. The EQNFIS model is a five-layer structure, which combines the traditional Takagi-Sugeno-Kang (TSK). Layer 2 of the EQNFIS model contains quantum membership functions, which are multilevel activation functions. Each quantum membership function is composed of the sum of sigm...

متن کامل

Voltage Sag Compensation with DVR in Power Distribution System Based on Improved Cuckoo Search Tree-Fuzzy Rule Based Classifier Algorithm

A new technique presents to improve the performance of dynamic voltage restorer (DVR) for voltage sag mitigation. This control scheme is based on cuckoo search algorithm with tree fuzzy rule based classifier (CSA-TFRC). CSA is used for optimizing the output of TFRC so the classification output of the network is enhanced. While, the combination of cuckoo search algorithm, fuzzy and decision tree...

متن کامل

SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS

This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft Comput.

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2008